Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 602
Filtrar
1.
J Insect Physiol ; 154: 104617, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331091

RESUMO

In nectivorous pollinators, timing and pattern of allocation of consumed nectar affects fitness traits and foraging behavior. Differences in male and female behaviors can influence these allocation strategies. These physiological patterns are not well studied in Lepidoptera, despite them being important pollinators. In this study we investigate crop-emptying rate and nectar allocation in Manduca sexta (Sphingidae), and how sex and flight influence these physiological patterns. After a single feeding event, moths were dissected at fixed time intervals to measure crop volume and analyze sugar allocation to flight muscle and fat body. Then we compared sedentary and flown moths to test how activity may alter these patterns. Sedentary males and females emptied their crops six hours after a feeding event. Both males and females preferentially allocated these consumed sugars to fat body over flight muscle. Moths began to allocate to the fat body during crop-emptying and retained these nutrients long-term (four and a half days after a feeding event). Males allocated consumed sugar to flight muscles sooner and retained these allocated nutrients in the flight muscle longer than did females. Flight initiated increased crop-emptying in females, but had no effect on males. Flight did not significantly affect allocation to flight muscle or fat body in either sex. This study showed that there are inherent differences in male and female nectar sugar allocation strategies, but that male and female differences in crop-emptying rate are context dependent on flight activity. These differences in physiology may be linked to distinct ways males and females maximize their own fitness.


Assuntos
Manduca , Mariposas , Masculino , Feminino , Animais , Néctar de Plantas , Mariposas/fisiologia , Manduca/fisiologia , Comportamento Alimentar/fisiologia , Açúcares , Flores
2.
Science ; 383(6683): 607-611, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330103

RESUMO

There is growing concern about sensory pollutants affecting ecological communities. Anthropogenically enhanced oxidants [ozone (O3) and nitrate radicals (NO3)] rapidly degrade floral scents, potentially reducing pollinator attraction to flowers. However, the physiological and behavioral impacts on pollinators and plant fitness are unknown. Using a nocturnal flower-moth system, we found that atmospherically relevant concentrations of NO3 eliminate flower visitation by moths, and the reaction of NO3 with a subset of monoterpenes is what reduces the scent's attractiveness. Global atmospheric models of floral scent oxidation reveal that pollinators in certain urban areas may have a reduced ability to perceive and navigate to flowers. These results illustrate the impact of anthropogenic pollutants on an animal's olfactory ability and indicate that such pollutants may be critical regulators of global pollination.


Assuntos
Poluentes Ambientais , Mariposas , Nitratos , Odorantes , Oenothera , Polinização , Espécies Reativas de Nitrogênio , Olfato , Animais , Flores/fisiologia , Mariposas/fisiologia , Feromônios , Polinização/fisiologia , Oenothera/fisiologia , Manduca/fisiologia , Poluição Ambiental
3.
J Exp Biol ; 226(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37534841

RESUMO

The parasitic wasp Cotesia congregata suppresses feeding in its host, the caterpillar Manduca sexta, during specific periods of wasp development. We examined both feeding behaviour and the neurophysiology of the mandibular closer muscle in parasitized and unparasitized control M. sexta to determine how the wasp may accomplish this. To test whether the wasps activated a pre-existing host mechanism for feeding cessation, we examined the microstructure of feeding behaviour in caterpillars that stopped feeding due to illness-induced anorexia or an impending moult. These microstructures were compared with that shown by parasitized caterpillars. While there were overall differences between parasitized and unparasitized caterpillars, the groups showed similar progression in feeding microstructure as feeding ended, suggesting a common pattern for terminating a meal. Parasitized caterpillars also consumed less leaf area in 100 bites than control caterpillars at around the same time their feeding microstructure changed. The decline in food consumption was accompanied by fewer spikes per burst and shorter burst durations in chewing muscle electromyograms. Similar extracellular results were obtained from the motorneuron of the mandibular closer muscle. However, chewing was dramatically re-activated in non-feeding parasitized caterpillars if the connectives posterior to the suboesophageal ganglion were severed. The same result was observed in unparasitized caterpillars given the same treatment. Our results suggest that the reduced feeding in parasitized caterpillars is not due to damage to the central pattern generator (CPG) for chewing, motor nerves or chewing muscles, but is more likely to be due to a suppression of chewing CPG activity by ascending or descending inputs.


Assuntos
Manduca , Vespas , Animais , Vespas/fisiologia , Manduca/fisiologia , Mastigação , Comportamento Alimentar/fisiologia , Larva/fisiologia , Interações Hospedeiro-Parasita/fisiologia
4.
PLoS Comput Biol ; 19(6): e1011170, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37307288

RESUMO

Sensory inputs in nervous systems are often encoded at the millisecond scale in a precise spike timing code. There is now growing evidence in behaviors ranging from slow breathing to rapid flight for the prevalence of precise timing encoding in motor systems. Despite this, we largely do not know at what scale timing matters in these circuits due to the difficulty of recording a complete set of spike-resolved motor signals and assessing spike timing precision for encoding continuous motor signals. We also do not know if the precision scale varies depending on the functional role of different motor units. We introduce a method to estimate spike timing precision in motor circuits using continuous MI estimation at increasing levels of added uniform noise. This method can assess spike timing precision at fine scales for encoding rich motor output variation. We demonstrate the advantages of this approach compared to a previously established discrete information theoretic method of assessing spike timing precision. We use this method to analyze the precision in a nearly complete, spike resolved recording of the 10 primary wing muscles control flight in an agile hawk moth, Manduca sexta. Tethered moths visually tracked a robotic flower producing a range of turning (yaw) torques. We know that all 10 muscles in this motor program encode the majority of information about yaw torque in spike timings, but we do not know whether individual muscles encode motor information at different levels of precision. We demonstrate that the scale of temporal precision in all motor units in this insect flight circuit is at the sub-millisecond or millisecond-scale, with variation in precision scale present between muscle types. This method can be applied broadly to estimate spike timing precision in sensory and motor circuits in both invertebrates and vertebrates.


Assuntos
Manduca , Mariposas , Animais , Músculos , Manduca/fisiologia , Potenciais de Ação/fisiologia
5.
J Exp Biol ; 226(14)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37334669

RESUMO

Although skeletal muscle is a specialized tissue that provides the motor for movement, it also participates in other functions, including the immune response. However, little is known about the effects of this multitasking on muscle. We show that muscle loses some of its capacity while it is participating in the immune response. Caterpillars (Manduca sexta) were exposed to an immune challenge, predator stress or a combination of immune challenge and predator stress. The expression of immune genes (toll-1, domeless, cactus, tube and attacin) increased in body wall muscle after exposure to an immune challenge. Muscle also showed a reduction in the amount of the energy storage molecule glycogen. During an immune challenge, the force of the defensive strike, an important anti-predator behaviour in M. sexta, was reduced. Caterpillars were also less able to defend themselves against a common enemy, the wasp Cotesia congregata, suggesting that the effect on muscle is biologically significant. Our results support the concept of an integrated defence system in which life-threatening events activate organism-wide responses. We suggest that increased mortality from predation is a non-immunological cost of infection in M. sexta. Our study also suggests that one reason non-immunological costs of infection exist is because of the participation of diverse organs, such as muscle, in immunity.


Assuntos
Manduca , Vespas , Animais , Manduca/fisiologia , Vespas/fisiologia , Comportamento Predatório , Músculos , Larva/metabolismo
6.
J R Soc Interface ; 20(202): 20230141, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37194272

RESUMO

Muscles act through elastic and dissipative elements to mediate movement, which can introduce dissipation and filtering which are important for energetics and control. The high power requirements of flapping flight can be reduced by an insect's exoskeleton, which acts as a spring with frequency-independent material properties under purely sinusoidal deformation. However, this purely sinusoidal dynamic regime does not encompass the asymmetric wing strokes of many insects or non-periodic deformations induced by external perturbations. As such, it remains unknown whether a frequency-independent model applies broadly and what implications it has for control. We used a vibration testing system to measure the mechanical properties of isolated Manduca sexta thoraces under symmetric, asymmetric and band-limited white noise deformations. The asymmetric and white noise conditions represent two types of generalized, multi-frequency deformations that may be encountered during steady-state and perturbed flight. Power savings and dissipation were indistinguishable between symmetric and asymmetric conditions, demonstrating that no additional energy is required to deform the thorax non-sinusoidally. Under white noise conditions, stiffness and damping were invariant with frequency, suggesting that the thorax has no frequency-dependent filtering properties. A simple flat frequency response function fits our measured frequency response. This work demonstrates the potential of materials with frequency-independent damping to simplify motor control by eliminating any velocity-dependent filtering that viscoelastic elements usually impose between muscle and wing.


Assuntos
Exoesqueleto Energizado , Manduca , Animais , Manduca/fisiologia , Voo Animal/fisiologia , Fenômenos Biomecânicos , Músculos/fisiologia , Asas de Animais/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-37119960

RESUMO

Manduca sexta are endothermic insects, requiring adult thorax temperatures to be elevated above 35 °C for flight muscles to produce the wing beat frequencies necessary for flight. During flight, these animals rely on aerobic production of ATP by flight muscle mitochondria with several potential metabolic pathways providing the fuel. Along with typical carbohydrate substrates, mitochondria of other endothermic insects including bumblebees and wasps can use the amino acid proline or glycerol 3-phosphate (G3P) as metabolic fuel for prewarm up and flight. Here we examine flight muscle mitochondria physiology and the role of temperature and substrates in oxidative phosphorylation from 3-day old adult Manduca sexta. Mitochondria oxygen flux from flight muscle fibers were temperature sensitive with Q10 values ranging from 1.99 to 2.90, with a large increase in LEAK respiration with increased temperature. Mitochondria oxygen flux was stimulated by carbohydrate-based substrates, with flux through Complex I substrates providing the greatest oxygen flux. Neither proline nor G3P produced an increase in oxygen flux of the flight muscle mitochondria. Unlike other endothermic insects, Manduca are unable to supplement carbohydrate oxidation with either proline or G3P entering through Coenzyme Q and rely on substrates entering at complex I and II.


Assuntos
Manduca , Animais , Manduca/fisiologia , Temperatura , Mitocôndrias Musculares/metabolismo , Insetos , Prolina/metabolismo , Oxigênio/metabolismo , Voo Animal/fisiologia
8.
J Exp Biol ; 226(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995279

RESUMO

Many animals use body parts such as tails to stabilize posture while moving at high speed. In flying insects, leg or abdominal inertia can influence flight posture. In the hawkmoth Manduca sexta, the abdomen contributes ∼50% of the total body weight and it can therefore serve to inertially redirect flight forces. How do torques generated by the wings and abdomen interact for flight control? We studied the yaw optomotor response of M. sexta by using a torque sensor attached to their thorax. In response to yaw visual motion, the abdomen moved antiphase with the stimulus, head and total torque. By studying moths with ablated wings and a fixed abdomen, we resolved abdomen and wing torques and revealed their individual contribution to total yaw torque production. Frequency-domain analysis revealed that the abdomen torque is overall smaller than wing torque, although the abdomen torque is ∼80% of the wing torque at higher visual stimulus temporal frequency. Experimental data and modeling revealed that the wing and abdomen torque are transmitted linearly to the thorax. By modeling the thorax and abdomen as a two-link system, we show that abdomen flexion can inertially redirect the thorax to add constructively to wing steering efforts. Our work argues for considering the role of the abdomen in tethered insect flight experiments that use force/torque sensors. Taken together, the hawkmoth abdomen can regulate wing torques in free flight, which could modulate flight trajectories and increase maneuverability.


Assuntos
Voo Animal , Manduca , Animais , Torque , Fenômenos Biomecânicos , Voo Animal/fisiologia , Abdome , Manduca/fisiologia , Asas de Animais/fisiologia , Insetos
9.
New Phytol ; 238(1): 349-366, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36636784

RESUMO

In response to challenges from herbivores and competitors, plants use fitness-limiting resources to produce (auto)toxic defenses. Jasmonate signaling, mediated by MYC2 transcription factors (TF), is thought to reconfigure metabolism to minimize these formal costs of defense and optimize fitness in complex environments. To study the context-dependence of this metabolic reconfiguration, we cosilenced NaMYC2a/b by RNAi in Nicotiana attenuata and phenotyped plants in the field and increasingly realistic glasshouse setups with competitors and mobile herbivores. NaMYC2a/b had normal phytohormonal responses, and higher growth and fitness in herbivore-reduced environments, but were devastated in high herbivore-load environments in the field due to diminished accumulations of specialized metabolites. In setups with competitors and mobile herbivores, irMYC2a/b plants had lower fitness than empty vector (EV) in single-genotype setups but increased fitness in mixed-genotype setups. Correlational analyses of metabolic, resistance, and growth traits revealed the expected defense/growth associations for most sectors of primary and specialized metabolism. Notable exceptions were some HGL-DTGs and phenolamides that differed between single-genotype and mixed-genotype setups, consistent with expectations of a blurred functional trichotomy of metabolites. MYC2 TFs mediate the reconfiguration of primary and specialized metabolic sectors to allow plants to optimize their fitness in complex environments.


Assuntos
Manduca , Animais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/metabolismo , Manduca/fisiologia , Interferência de RNA , Herbivoria/fisiologia , Ciclopentanos/metabolismo
10.
Curr Biol ; 32(24): 5295-5308.e5, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36473466

RESUMO

Understanding the molecular basis of reproductive isolation and speciation is a key goal of evolutionary genetics. In the South American genus Petunia, the R2R3-MYB transcription factor MYB-FL regulates the biosynthesis of UV-absorbing flavonol pigments, a major determinant of pollinator preference. MYB-FL is highly expressed in the hawkmoth-pollinated P. axillaris, but independent losses of its activity in sister taxa P. secreta and P. exserta led to UV-reflective flowers and associated pollinator shifts in each lineage (bees and hummingbirds, respectively). We created a myb-fl CRISPR mutant in P. axillaris and studied the effect of this single gene on innate pollinator preference. The mutation strongly reduced the expression of the two key flavonol-related biosynthetic genes but only affected the expression of few other genes. The mutant flowers were UV reflective as expected but additionally contained low levels of visible anthocyanin pigments. Hawkmoths strongly preferred the wild-type P. axillaris over the myb-fl mutant, whereas both social and solitary bee preference depended on the level of visible color of the mutants. MYB-FL, with its specific expression pattern, small number of target genes, and key position at the nexus of flavonol and anthocyanin biosynthetic pathways, provides a striking example of evolution by single mutations of large phenotypic effect.


Assuntos
Manduca , Fatores de Transcrição , Animais , Abelhas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antocianinas/metabolismo , Manduca/fisiologia , Flavonóis , Mutação , Flores/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Nat Commun ; 13(1): 7773, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522313

RESUMO

Previous studies have considered floral humidity to be an inadvertent consequence of nectar evaporation, which could be exploited as a cue by nectar-seeking pollinators. By contrast, our interdisciplinary study of a night-blooming flower, Datura wrightii, and its hawkmoth pollinator, Manduca sexta, reveals that floral relative humidity acts as a mutually beneficial signal in this system. The distinction between cue- and signal-based functions is illustrated by three experimental findings. First, floral humidity gradients in Datura are nearly ten-fold greater than those reported for other species, and result from active (stomatal conductance) rather than passive (nectar evaporation) processes. These humidity gradients are sustained in the face of wind and are reconstituted within seconds of moth visitation, implying substantial physiological costs to these desert plants. Second, the water balance costs in Datura are compensated through increased visitation by Manduca moths, with concomitant increases in pollen export. We show that moths are innately attracted to humid flowers, even when floral humidity and nectar rewards are experimentally decoupled. Moreover, moths can track minute changes in humidity via antennal hygrosensory sensilla but fail to do so when these sensilla are experimentally occluded. Third, their preference for humid flowers benefits hawkmoths by reducing the energetic costs of flower handling during nectar foraging. Taken together, these findings suggest that floral humidity may function as a signal mediating the final stages of floral choice by hawkmoths, complementing the attractive functions of visual and olfactory signals beyond the floral threshold in this nocturnal plant-pollinator system.


Assuntos
Datura , Manduca , Mariposas , Animais , Polinização/fisiologia , Néctar de Plantas , Umidade , Flores/fisiologia , Manduca/fisiologia , Mariposas/fisiologia , Plantas
12.
J Insect Physiol ; 143: 104450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36265566

RESUMO

To meet energetic and osmotic demands, animals make dynamic foraging decisions about food quality and quantity. In the wild, foraging animals may be forced to consume a less preferred or sub-optimal food source for long periods of time. Few choice feeding assays in laboratory settings approximate such contingencies. In this study the foraging behaviors of the hawkmoth Manduca sexta were measured when adult moths were placed within different relative humidity (RH) environments (20%, 40%, 60% and 80% RH) and provided with only one of the following experimental nectars: 0% (water), 12% or 24 % w/V sucrose solutions. Overall, ambient humidity influenced survivorship and foraging behaviors. Moth survivorship increased at higher ambient humidity regardless of experimental nectar. Moths that had access to experimental nectar imbibed large volumes of fluid regardless of what nectar was offered when placed at the lowest humidity (20% RH). However, when placed at the highest humidity (80% RH), moths imbibed higher volumes of fluid when given access to experimental nectar with sucrose in comparison with water. RH also influenced daily foraging behaviors: peak nectar consumption occurred earlier at lower RH levels. Consistent with previous studies in which moths could choose among nectar solutions, total energy intake was not affected by ambient RH under no-choice conditions. However, the proportion of time spent foraging and total energy consumption were significantly reduced across all RH levels in no-choice assays, when compared with previous studies of choice assays under the same conditions. Our results show that even when M. sexta moths are presented with limited options, they can alter their foraging behavior in response to environmental changes, enabling them to meet osmotic and/or energetic demands.


Assuntos
Manduca , Mariposas , Animais , Néctar de Plantas , Umidade , Comportamento Alimentar/fisiologia , Manduca/fisiologia , Mariposas/fisiologia , Sacarose , Água
13.
Arthropod Struct Dev ; 68: 101170, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35576787

RESUMO

During metamorphosis, the dorsolongitudinal flight muscles (DLMs) of both the moth Manduca sexta and the fly Drosophila melanogaster develop from the remnants of larval muscles called larval scaffolds. Although this developmental program has been conserved across highly disparate taxa, the role of the larval scaffold remains unclear. Ablation experiments have demonstrated that the Drosophila DLM does not require the scaffold, but the resulting de novo muscles vary highly in fiber number, and their functional characteristics were not examined. To address this question in Manduca, we have surgically ablated the DLM precursors in Manduca sexta larvae and assayed the resulting DLMs in pharate adults using X-ray micro-CT and phalloidin histology. Following ablation, animals were able to form de novo DLMs with normal myofibril alignment, but these muscles had an altered shape and highly variable number of fascicles. Our results suggest that the larval scaffold is not required for DLM development in Manduca sexta, but appears to define the number of fascicles in the adult muscle, as previously found in Drosophila. Additionally, our ablated animals were able to generate flight, further suggesting that the use of a larval scaffold is a modification on the more ancestral myogenesis program.


Assuntos
Manduca , Animais , Drosophila , Drosophila melanogaster , Larva , Manduca/fisiologia , Metamorfose Biológica , Músculos/fisiologia
14.
Plant Physiol ; 187(3): 1762-1778, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618073

RESUMO

Shoot herbivores may influence the communities of herbivores associated with the roots via inducible defenses. However, the molecular mechanisms and hormonal signaling underpinning the systemic impact of leaf herbivory on root-induced responses against nematodes remain poorly understood. By using tomato (Solanum lycopersicum) as a model plant, we explored the impact of leaf herbivory by Manduca sexta on the performance of the root knot nematode Meloidogyne incognita. By performing glasshouse bioassays, we found that leaf herbivory reduced M. incognita performance in the roots. By analyzing the root expression profile of a set of oxylipin-related marker genes and jasmonate root content, we show that leaf herbivory systemically activates the 13-Lipoxigenase (LOX) and 9-LOX branches of the oxylipin pathway in roots and counteracts the M. incognita-triggered repression of the 13-LOX branch. By using untargeted metabolomics, we also found that leaf herbivory counteracts the M. incognita-mediated repression of putative root chemical defenses. To explore the signaling involved in this shoot-to-root interaction, we performed glasshouse bioassays with grafted plants compromised in jasmonate synthesis or perception, specifically in their shoots. We demonstrated the importance of an intact shoot jasmonate perception, whereas having an intact jasmonate biosynthesis pathway was not essential for this shoot-to-root interaction. Our results highlight the impact of leaf herbivory on the ability of M. incognita to manipulate root defenses and point to an important role for the jasmonate signaling pathway in shoot-to-root signaling.


Assuntos
Ciclopentanos/metabolismo , Herbivoria , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Solanum lycopersicum/fisiologia , Animais , Manduca/fisiologia , Tylenchoidea/fisiologia
15.
J Chem Ecol ; 47(12): 1042-1048, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34546516

RESUMO

Many pollinating insects exhibit flower constancy, i.e. they target flower species they have already experienced and fed from. While the insects might profit from reduced handling costs when revisiting similar flowers, flower constancy, in addition, is of benefit for the plants as it guarantees pollen transfer to conspecifics. Here we investigate whether the previous experience of an insect can also result in oviposition constancy, i.e. whether ovipositing on a given plant species will drive future oviposition preference in a female insect. We show that female hawkmoths (Manduca sexta), after having oviposited on a given plant species only once, indeed will prefer this plant in future oviposition choices. As oviposition preference is even affected 24 h after the moth has oviposited on a given plant, long term memory seems to be involved in this oviposition constancy. Our data furthermore suggest that, as shown for flower constancy, ovipositing moths increase their handling efficiency by targeting those host plants they have already experienced.


Assuntos
Cadeia Alimentar , Manduca/fisiologia , Oviposição , Animais , Feminino , Memória de Longo Prazo , Folhas de Planta/química , Especificidade da Espécie
16.
PLoS Comput Biol ; 17(8): e1009195, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34379622

RESUMO

Animals rely on sensory feedback to generate accurate, reliable movements. In many flying insects, strain-sensitive neurons on the wings provide rapid feedback that is critical for stable flight control. While the impacts of wing structure on aerodynamic performance have been widely studied, the impacts of wing structure on sensing are largely unexplored. In this paper, we show how the structural properties of the wing and encoding by mechanosensory neurons interact to jointly determine optimal sensing strategies and performance. Specifically, we examine how neural sensors can be placed effectively on a flapping wing to detect body rotation about different axes, using a computational wing model with varying flexural stiffness. A small set of mechanosensors, conveying strain information at key locations with a single action potential per wingbeat, enable accurate detection of body rotation. Optimal sensor locations are concentrated at either the wing base or the wing tip, and they transition sharply as a function of both wing stiffness and neural threshold. Moreover, the sensing strategy and performance is robust to both external disturbances and sensor loss. Typically, only five sensors are needed to achieve near-peak accuracy, with a single sensor often providing accuracy well above chance. Our results show that small-amplitude, dynamic signals can be extracted efficiently with spatially and temporally sparse sensors in the context of flight. The demonstrated interaction of wing structure and neural encoding properties points to the importance of understanding each in the context of their joint evolution.


Assuntos
Voo Animal/fisiologia , Insetos/anatomia & histologia , Insetos/fisiologia , Modelos Biológicos , Asas de Animais/anatomia & histologia , Asas de Animais/inervação , Potenciais de Ação/fisiologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Biologia Computacional , Simulação por Computador , Retroalimentação Sensorial/fisiologia , Manduca/anatomia & histologia , Manduca/fisiologia , Mecanorreceptores/fisiologia , Modelos Neurológicos , Rotação , Asas de Animais/fisiologia
17.
Nat Commun ; 12(1): 2867, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001894

RESUMO

There is now good evidence that many mutualisms evolved from antagonism; why or how, however, remains unclear. We advance the Co-Opted Antagonist (COA) Hypothesis as a general mechanism explaining evolutionary transitions from antagonism to mutualism. COA involves an eco-coevolutionary process whereby natural selection favors co-option of an antagonist to perform a beneficial function and the interacting species coevolve a suite of phenotypic traits that drive the interaction from antagonism to mutualism. To evaluate the COA hypothesis, we present a generalized eco-coevolutionary framework of evolutionary transitions from antagonism to mutualism and develop a data-based, fully ecologically-parameterized model of a small community in which a lepidopteran insect pollinates some of its larval host plant species. More generally, our theory helps to reconcile several major challenges concerning the mechanisms of mutualism evolution, such as how mutualisms evolve without extremely tight host fidelity (vertical transmission) and how ecological context influences evolutionary outcomes, and vice-versa.


Assuntos
Evolução Molecular , Insetos/genética , Plantas/genética , Simbiose/genética , Algoritmos , Animais , Datura/genética , Datura/parasitologia , Datura/fisiologia , Ecossistema , Interações Hospedeiro-Parasita/genética , Insetos/fisiologia , Manduca/genética , Manduca/fisiologia , Modelos Genéticos , Plantas/parasitologia , Polinização/genética , Polinização/fisiologia
18.
Biol Open ; 10(3)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33737293

RESUMO

Flying insects track turbulent odor plumes to find mates, food and egg-laying sites. To maintain contact with the plume, insects are thought to adapt their flight control according to the distribution of odor in the plume using the timing of odor onsets and intervals between odor encounters. Although timing cues are important, few studies have addressed whether insects are capable of deriving spatial information about odor distribution from bilateral comparisons between their antennae in flight. The proboscis extension reflex (PER) associative learning protocol, originally developed to study odor learning in honeybees, was used as a tool to ask if hawkmoths, Manduca sexta, can discriminate between odor stimuli arriving on either antenna. We show moths discriminated the odor arrival side with an accuracy of >70%. Information about spatial distribution of odor stimuli may be available to moths searching for odor sources, opening the possibility that they use both spatial and temporal odor information.This article has an associated First Person interview with the first author of the paper.


Assuntos
Aprendizagem por Discriminação , Comportamento Alimentar , Manduca/fisiologia , Odorantes , Comportamento Sexual Animal , Animais , Feminino
19.
Curr Biol ; 31(6): R280-R281, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33756136

RESUMO

Many animals use visual cues to navigate their environment. To encode the large input ranges of natural signals optimally, their sensory systems have adapted to the stimulus statistics experienced in their natural habitats1. A striking example, shared across animal phyla, is the retinal tuning to the relative abundance of blue light from the sky, and green light from the ground, evident in the frequency of each photoreceptor type in the two retinal hemispheres2. By adhering only to specific regions of the visual field that contain the relevant information, as for the high-acuity dorsal regions in the eyes of male flies chasing females3, the neural investment can be further reduced. Regionalisation can even lead to activation of the appropriate visual pathway by target location, rather than by stimulus features. This has been shown in fruit flies, which increase their landing attempts when an expanding disc is presented in their frontal visual field, while lateral presentation increases obstacle avoidance responses4. We here report a similar switch in behavioural responses for extended visual scenes. Using a free-flight paradigm, we show that the hummingbird hawkmoth (Macroglossum stellatarum) responds with flight-control adjustments to translational optic-flow cues exclusively in their ventral and lateral visual fields, while identical stimuli presented dorsally elicit a novel directional flight response. This response split is predicted by our quantitative imaging data from natural visual scenes in a variety of habitats, which demonstrate higher magnitudes of translational optic flow in the ventral hemisphere, and the opposite distribution for contrast edges containing directional information.


Assuntos
Voo Animal/fisiologia , Manduca/fisiologia , Fluxo Óptico/fisiologia , Campos Visuais/fisiologia , Animais , Feminino , Masculino
20.
Plant Cell ; 33(5): 1748-1770, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33561278

RESUMO

The native diploid tobacco Nicotiana attenuata produces abundant, potent anti-herbivore defense metabolites known as 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) whose glycosylation and malonylation biosynthetic steps are regulated by jasmonate signaling. To characterize the biosynthetic pathway of HGL-DTGs, we conducted a genome-wide analysis of uridine diphosphate glycosyltransferases (UGTs) and identified 107 family-1 UGT members. The transcript levels of three UGTs were highly correlated with the transcript levels two key HGL-DTG biosynthetic genes: geranylgeranyl diphosphate synthase (NaGGPPS) and geranyllinalool synthase (NaGLS). NaGLS's role in HGL-DTG biosynthesis was confirmed by virus-induced gene silencing. Silencing the Uridine diphosphate (UDP)-rhamnosyltransferase gene UGT91T1 demonstrated its role in the rhamnosylation of HGL-DTGs. In vitro enzyme assays revealed that UGT74P3 and UGT74P4 use UDP-glucose for the glucosylation of 17-hydroxygeranyllinalool (17-HGL) to lyciumoside I. Plants with stable silencing of UGT74P3 and UGT74P5 were severely developmentally deformed, pointing to a phytotoxic effect of the aglycone. The application of synthetic 17-HGL and silencing of the UGTs in HGL-DTG-free plants confirmed this phytotoxic effect. Feeding assays with tobacco hornworm (Manduca sexta) larvae revealed the defensive functions of the glucosylation and rhamnosylation steps in HGL-DTG biosynthesis. Glucosylation of 17-HGL is therefore a critical step that contributes to the resulting metabolites' defensive function and solves the autotoxicity problem of this potent chemical defense.


Assuntos
Monoterpenos Acíclicos/metabolismo , Diterpenos/metabolismo , Glicosídeos/metabolismo , /metabolismo , Monoterpenos Acíclicos/química , Animais , Vias Biossintéticas , Inativação Gênica , Glicosilação , Glicosiltransferases/metabolismo , Herbivoria , Larva/fisiologia , Manduca/fisiologia , Metabolômica , Necrose , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...